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Abstract. We study the behaviour of dynamical critical exponents of the two-dimensional Ising
model with a line of defects. Simulations done at an early time (first 100 Monte Carlo steps)
reveal that the critical exponeatof Jansseret al (Z. Phys.B 73 539) depends on the strength

of the exchange coupling constant’) of the altered line. On the other hand, our simulations
permit us to conclude that the dynamical critical exponens not sensitive to changes in

J'. In addition, we investigate the possible invariance of the anomalous dimensgjoaf (the
magnetization at the beginning of the process.

Many results have recently been obtained concerning the critical dynamical behaviour of
statistical models at an early time. This kind of investigation was motivated by analytical
and numerical results contained in the papers of Janssah[1] and Huse [2] pointing
to a new dynamical critical exponenf)(describing the now-called ‘critical initial slip’
phenomena. This exponent describes the raising of the magnetization at very short times

M(t) ~ mot? 1)

when a system initially in random states, with a small magnetization, is quenched to the
critical temperature and evolves with the dynamics of model A. Simulations done for the
Ising and Potts¢ = 3) model indicate that the new exponehtdoes not depend on the
kind of dynamics (Metropolis, heat-bath or Glauber). In addition, generalized Binder’s
cummulant [3] as well as other sample averages [4, 5] which scale®asave proved

to be useful in determining the dynamical exponentwhich relates time and spatial
correlation length{ oc £2). The power of this approach was also verified in nonequilibrium
models such as the majority vote model [6]. In this paper we investigate the behaviour
of the dynamical critical exponentg @nd 6) when a marginal operator is present in the
Hamiltonian. Although the presence of a marginal operator has well known consequences
for the static critical behaviour [7], very little is known about the dynamical one. To the
best of our knowledge the only study on this subject was recently conducted élyali

[8] for the Ashkin—Teller model which interpolates between Ising and 4 Potts model,
exhibiting a continuous varying exponemi for the correlation lengthé). They have also
detected a nonuniversal behaviour of the dynamical expaneimt this paper we study the
two-dimensional 1sing model with a line of defects (different coupling constants between
spins along a given line) to verify the influence of the marginal operator on the dynamical
exponent® andz. In fact, we found that along the altered line the exportedepends on

the ratio ¢///J). On the contrary, we detected that no changes related to the expgrent
hypothesis that we used to obtain the dependence of the critical exppoanthe ratio of
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couplings (’/J). Finally, we have investigated the behaviour of the anomalous dimension

xo of the magnetization at the beginning of the process. At least within the precision of our

calculations, that value was kept constant despite the value of the coupling congjant (

In the following we present the model and results of the simulations that we performed.
The two-dimensional isotropic Ising model undergoes a spontaneous symmetry breaking

[9] at a critical value of the temperature given By= 2J/kIn2. In the neighbourhood of

that temperature, the correlation length divergesTas (.) % which means that = 1. In

addition, the magnetization vanishes like € 7.)Y/® which leads to the critical exponent

B = %. At long distances the correlation energy—energy behaves, at the critical temperature,

as r~%«, where x, is the anomalous dimension of the energy satisfying the relation:

xe +1/v = 2. Thus, the introduction of a different coupling’), along just one line

of the lattice § = 1), fulfils the necessary conditior), = d = 1 to obtain nonuniversality

[7]: the presence in the Hamiltonian of an operator which scales4sThis, in fact, was

the result obtained by Bariev [10] and McCoy and Perk [11], later rederived by Peschel and

Schotte [12] in the context of quantum chains. After the work of Cardy [13], stressing the

importance of the conformal invariance in two-dimensional systems, the Ising model with

a line of defects was revisited by Turban [14]. Following this, many-body techniques [15]

were used to investigate its quantum analogue [16-18], however, this model still deserves

further attention [19]. It is interesting to note that the ‘global’ exponenas well as the

critical temperature, does not change when the value of the couplifgs(altered. The

same is not true for the exponent* (= 28*) of the correlation functioralong the line

of defects (atT = T7.). This ‘local’ exponent depends continuously on the value of the

coupling (/') as

. 2, ¥
n=|—-tan " K 2
T
where
K = tanh(J./kT,)/tanNJ/kT,)
and J; is the dual of the modified coupling’

exp(—2J1/kT,) =tanhJ'/kT).

Our investigation began by following the evolution of the magnetization when samples
are sharply prepared withy # 0 but small. We measured the average over sample$ (10
of the magnetization for two lines (one pure, the other with defects). In addition, we also
calculated the magnetization over the entire sample. Simulations were done for lattices with
36 < L < 72 and the update followed from heat-bath dynamics. Because our interest is in
the development of magnetization of the lines, we prepared all the samples with the same
initial magnetization for each line. Figuresa)(and p) present the raise of magnetization
for three cases: pure line, line with defects and entire sample, wheh = 2 and 05.
Note the similarity between the curves associated to the pure line and entire sample in both
cases. Even when working with small lattices we note that the effect of the line of defects
restricts itself to its neighbourhood. The conclusion is that the expohetgpends on
the coupling constant of the defect line (see figure 2) which occurs with the static critical
index n*. Dynamical universality (same results as obtained by heat-bath and Metropolis
updating) was observed in the simulations found in the pure Ising model [20], although
bigger deviations could be seen whétyJ # 1.

The next step is to check the plausible hypothesis that the dynamical critical exponent
z is not changed by the line of defects. As pointed by Li [21], the short-time behaviour of
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Figure 1. Log-log plot of the magnetization versus time f@:a pure linea the line of defects,
and [ the complete square lattice. Samples (100 000) were originally at high temperature but
they had a small magnetization per sitg = 0.0278. The size of the lattice in this case is

L = 72 and the updating was done with heat-bath dynamasRésults for the casg/’/J) = 2
whereaslf) presents results for/’/J) = 0.5.
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Figure 2. Dependence of the new critical exponéndn the ratio of couplingsJ’/J). The full
curve is a guide for the eyes.
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Figure 3. Log—log plot of temporal decay of the magnetization at the line of defects for several
values of the ratio of couplings/(/J). The slope of those curves depends on the ratigX)

and give estimates fon* (equation (4)). Heat-bath dynamics was used to update samples
(50 000) which were completely magnetizedrat 0. The size of lattice waé = 36.
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the magnetization of samples thatrat O are totally magnetized«( = 1), is given by
m o~ 2z 3)

where z is the dynamical critical exponent, andand v are the known static indices of
the model. If our hypothesis is correct we can obtain the expomemnthich characterizes
the polynomial decay of the correlation function (@t= 7.) along the line of defects by
comparing the slope of two straight lines in the log—log plot of magnetization versus time
(one of them belonging to the line of defects, the other corresponding to a normal line far
enough off the altered one). Figure 3 shows the behaviour of the magnetization of those
lines, for several values of the coupling constdht Figure 4 presents estimates for the
exponent;*, obtained by the relation

. tana’

T = ana @)
wheren = % is the critical exponent for the pure Ising model. To obtain that equation we
have used the fact thatalways has the same value, despite the valug’ofln addition,
tane’ and tarx are the slopes of the curves for altered and pure lines. The results so
obtained are in complete agreement with the exact ones (full curve) obtained by Bariev [10]
and McCoy and Perk [11]. To obtain the error bars (smaller than the size of points) we
repeat each simulation five times. We observe that our estimates are independent of the
specific value of the dynamical critical exponent

Another way to obtain the same conclusion is to calculate the evolution of the second
moment of the magnetization of samples which at 0 satisfy the conditionsm = 0 and
& = 0. Scaling arguments [3] assert that should behave as

(m2> ~ t(d—'l/‘))/z (5)

whered is the dimension of the object for which we are calculating that quandity (L
when we are interested in lines). Figure 5 illustrates the results for several valués/of

this figure shows polynomial behaviour with distinct exponents. Finally, we can estimate
n* from the equation

tang’
tang

where tarp’ (tang) are the slopes of the straight lines in the figure, corresponding to the
line with (without) defects. Results for obtained by this procedure are plotted in figure 6.
Once again we see that the hypothesis of constambrks well, at least whed’/J < 1.
We attribute the disagreement observed for higher values of the fatibto the influence
of the strong coupling over the fluctuations of the magnetization of the pure line.

Finally, we check the behaviour of the anomalous dimensipnf the magnetization
far from equilibrium. As it is now known, the critical initial slip is a consequence of the
difference between the anomalous dimensigrand the usual scaling dimensigii2v of
the magnetization [22]. More specifically, we have

xo=1n/2v +z0 (1)

which permits us to obtaimg, for any value of the ratioX’/J), since we know both: the
exponenty (figure 4) and the new dynamical exponénffigure 2). As shown in figure 7,

the result is very approximately equal to 0.53 (corresponding to the pure case) for a large
interval of (J'/J). We have used the valuelZ2+ 0.006, obtained by Grassberger [23],

for the dynamical critical exponent

n=1-1-n)

(6)
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Figure 4. Estimates for the nonuniversal critical exponefit(characterizing the decay of the
correlation function at the defect line) obtained by the scaling relation r~"/2%, exhibited
in figure 3 and equation (4). The full curve is the exact resultjforgiven by equation (2).
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Figure 5. Log-log plot of the squared magnetization at the defect line for several values of the
ratio of couplings(J’/J). Scaling relations predict that the slope of the lines should be given

by (d — n*/v)/z.
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Figure 6. Estimates for the nonuniversal critical exponghtobtained with equation (6). When
J'/J is greater than 1 results are poor.
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Figure 7. Plot of the anomalous dimension of the magnetizatigpn= z6 + n*/2v versus the
ratio of couplings(J'/J).
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In summary, in order to understand the effect of a marginal operator over the dynamical
critical exponents we have investigated the short-time critical dynamics of the Ising model
with a line of defects. We have confirmed nonuniversality for the ‘local’ exporentt
not for the global dynamical exponent The universality of; permitted us to determine
the static nonuniversal indey, of the correlation function along the line of defects, using
just the first 100 steps of the simulation (free of critical slowing down phenomena). We
have also detected an apparent universal behaviour for the anomalous dimensfahe
magnetization, even at the line of defects. Although the numerical results can be slightly
different, they are qualitatively the same when we use heat-bath or Metropolis updating. At
present, we are studying global and local persistence [24-26] phenomena in this model.
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