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Abstract. We study the behaviour of dynamical critical exponents of the two-dimensional Ising
model with a line of defects. Simulations done at an early time (first 100 Monte Carlo steps)
reveal that the critical exponentθ of Janssenet al (Z. Phys.B 73 539) depends on the strength
of the exchange coupling constant (J ′) of the altered line. On the other hand, our simulations
permit us to conclude that the dynamical critical exponentz is not sensitive to changes in
J ′. In addition, we investigate the possible invariance of the anomalous dimension (x0) of the
magnetization at the beginning of the process.

Many results have recently been obtained concerning the critical dynamical behaviour of
statistical models at an early time. This kind of investigation was motivated by analytical
and numerical results contained in the papers of Janssenet al [1] and Huse [2] pointing
to a new dynamical critical exponent (θ ) describing the now-called ‘critical initial slip’
phenomena. This exponent describes the raising of the magnetization at very short times

M(t) ∼ m0t
θ (1)

when a system initially in random states, with a small magnetization, is quenched to the
critical temperature and evolves with the dynamics of model A. Simulations done for the
Ising and Potts (q = 3) model indicate that the new exponentθ does not depend on the
kind of dynamics (Metropolis, heat-bath or Glauber). In addition, generalized Binder’s
cummulant [3] as well as other sample averages [4, 5] which scale asL0 have proved
to be useful in determining the dynamical exponentz which relates time and spatial
correlation length (τ ∝ ξ z). The power of this approach was also verified in nonequilibrium
models such as the majority vote model [6]. In this paper we investigate the behaviour
of the dynamical critical exponents (z and θ ) when a marginal operator is present in the
Hamiltonian. Although the presence of a marginal operator has well known consequences
for the static critical behaviour [7], very little is known about the dynamical one. To the
best of our knowledge the only study on this subject was recently conducted by Liet al
[8] for the Ashkin–Teller model which interpolates between Ising andq = 4 Potts model,
exhibiting a continuous varying exponent (ν) for the correlation length (ξ ). They have also
detected a nonuniversal behaviour of the dynamical exponentz. In this paper we study the
two-dimensional Ising model with a line of defects (different coupling constants between
spins along a given line) to verify the influence of the marginal operator on the dynamical
exponentsθ andz. In fact, we found that along the altered line the exponentθ depends on
the ratio (J ′/J ). On the contrary, we detected that no changes related to the exponentz, a
hypothesis that we used to obtain the dependence of the critical exponentη on the ratio of
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couplings (J ′/J ). Finally, we have investigated the behaviour of the anomalous dimension
x0 of the magnetization at the beginning of the process. At least within the precision of our
calculations, that value was kept constant despite the value of the coupling constant (J ′).
In the following we present the model and results of the simulations that we performed.

The two-dimensional isotropic Ising model undergoes a spontaneous symmetry breaking
[9] at a critical value of the temperature given byT = 2J/k ln 2. In the neighbourhood of
that temperature, the correlation length diverges as (T − Tc)−1 which means thatν = 1. In
addition, the magnetization vanishes like (T − Tc)1/8 which leads to the critical exponent
β = 1

8. At long distances the correlation energy–energy behaves, at the critical temperature,
as r−2xε , where xε is the anomalous dimension of the energy satisfying the relation:
xε + 1/v = 2. Thus, the introduction of a different coupling (J ′), along just one line
of the lattice (d = 1), fulfils the necessary conditionxop = d = 1 to obtain nonuniversality
[7]: the presence in the Hamiltonian of an operator which scales asr−d . This, in fact, was
the result obtained by Bariev [10] and McCoy and Perk [11], later rederived by Peschel and
Schotte [12] in the context of quantum chains. After the work of Cardy [13], stressing the
importance of the conformal invariance in two-dimensional systems, the Ising model with
a line of defects was revisited by Turban [14]. Following this, many-body techniques [15]
were used to investigate its quantum analogue [16–18], however, this model still deserves
further attention [19]. It is interesting to note that the ‘global’ exponentν, as well as the
critical temperature, does not change when the value of the coupling (J ′) is altered. The
same is not true for the exponent (η∗ = 2β∗) of the correlation functionalong the line
of defects (atT = Tc). This ‘local’ exponent depends continuously on the value of the
coupling (J ′) as

η∗ =
(

2

π
tan−1K

)2

(2)

where

K = tanh(J1/kTc)/ tanh(J/kTc)

andJ1 is the dual of the modified couplingJ ′

exp(−2J1/kTc) = tanh(J ′/kT ).

Our investigation began by following the evolution of the magnetization when samples
are sharply prepared withm0 6= 0 but small. We measured the average over samples (105)
of the magnetization for two lines (one pure, the other with defects). In addition, we also
calculated the magnetization over the entire sample. Simulations were done for lattices with
366 L 6 72 and the update followed from heat-bath dynamics. Because our interest is in
the development of magnetization of the lines, we prepared all the samples with the same
initial magnetization for each line. Figures 1(a) and (b) present the raise of magnetization
for three cases: pure line, line with defects and entire sample, whenJ ′/J = 2 and 0.5.
Note the similarity between the curves associated to the pure line and entire sample in both
cases. Even when working with small lattices we note that the effect of the line of defects
restricts itself to its neighbourhood. The conclusion is that the exponentθ depends on
the coupling constant of the defect line (see figure 2) which occurs with the static critical
index η∗. Dynamical universality (same results as obtained by heat-bath and Metropolis
updating) was observed in the simulations found in the pure Ising model [20], although
bigger deviations could be seen whenJ ′/J 6= 1.

The next step is to check the plausible hypothesis that the dynamical critical exponent
z is not changed by the line of defects. As pointed by Li [21], the short-time behaviour of
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Figure 1. Log–log plot of the magnetization versus time for:• a pure line,M the line of defects,
and� the complete square lattice. Samples (100 000) were originally at high temperature but
they had a small magnetization per sitem0 = 0.0278. The size of the lattice in this case is
L = 72 and the updating was done with heat-bath dynamics. (a) Results for the case(J ′/J ) = 2
whereas (b) presents results for(J ′/J ) = 0.5.
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Figure 2. Dependence of the new critical exponentθ on the ratio of couplings(J ′/J ). The full
curve is a guide for the eyes.

Figure 3. Log–log plot of temporal decay of the magnetization at the line of defects for several
values of the ratio of couplings (J ′/J ). The slope of those curves depends on the ratio (J ′/J )
and give estimates forη∗ (equation (4)). Heat-bath dynamics was used to update samples
(50 000) which were completely magnetized att = 0. The size of lattice wasL = 36.
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the magnetization of samples that att = 0 are totally magnetized (m = 1), is given by

m ∼ t−η/2νz (3)

wherez is the dynamical critical exponent, andη and ν are the known static indices of
the model. If our hypothesis is correct we can obtain the exponentη∗ which characterizes
the polynomial decay of the correlation function (atT = Tc) along the line of defects by
comparing the slope of two straight lines in the log–log plot of magnetization versus time
(one of them belonging to the line of defects, the other corresponding to a normal line far
enough off the altered one). Figure 3 shows the behaviour of the magnetization of those
lines, for several values of the coupling constantJ ′. Figure 4 presents estimates for the
exponentη∗, obtained by the relation

η∗ = η tanα

tanα

′
(4)

whereη = 1
4 is the critical exponent for the pure Ising model. To obtain that equation we

have used the fact thatz always has the same value, despite the value ofJ ′. In addition,
tanα′ and tanα are the slopes of the curves for altered and pure lines. The results so
obtained are in complete agreement with the exact ones (full curve) obtained by Bariev [10]
and McCoy and Perk [11]. To obtain the error bars (smaller than the size of points) we
repeat each simulation five times. We observe that our estimates are independent of the
specific value of the dynamical critical exponentz.

Another way to obtain the same conclusion is to calculate the evolution of the second
moment of the magnetization of samples which att = 0 satisfy the conditions:m = 0 and
ξ = 0. Scaling arguments [3] assert thatm2 should behave as

〈m2〉 ∼ t (d−η/ν)/z (5)

whered is the dimension of the object for which we are calculating that quantity (d = 1
when we are interested in lines). Figure 5 illustrates the results for several values ofJ ′/J ,
this figure shows polynomial behaviour with distinct exponents. Finally, we can estimate
η∗ from the equation

η∗ = 1− (1− η) tanφ′

tanφ
(6)

where tanφ′ (tanφ) are the slopes of the straight lines in the figure, corresponding to the
line with (without) defects. Results forη∗ obtained by this procedure are plotted in figure 6.
Once again we see that the hypothesis of constantz works well, at least whenJ ′/J < 1.
We attribute the disagreement observed for higher values of the ratioJ ′/J to the influence
of the strong coupling over the fluctuations of the magnetization of the pure line.

Finally, we check the behaviour of the anomalous dimensionx0 of the magnetization
far from equilibrium. As it is now known, the critical initial slip is a consequence of the
difference between the anomalous dimensionx0 and the usual scaling dimensionη/2ν of
the magnetization [22]. More specifically, we have

x0 = η/2ν + zθ (7)

which permits us to obtainx0, for any value of the ratio (J ′/J ), since we know both: the
exponentη (figure 4) and the new dynamical exponentθ (figure 2). As shown in figure 7,
the result is very approximately equal to 0.53 (corresponding to the pure case) for a large
interval of (J ′/J ). We have used the value 2.172± 0.006, obtained by Grassberger [23],
for the dynamical critical exponentz.
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Figure 4. Estimates for the nonuniversal critical exponentη∗ (characterizing the decay of the
correlation function at the defect line) obtained by the scaling relationm ∼ t−η/2νz, exhibited
in figure 3 and equation (4). The full curve is the exact result forη∗, given by equation (2).

Figure 5. Log–log plot of the squared magnetization at the defect line for several values of the
ratio of couplings(J ′/J ). Scaling relations predict that the slope of the lines should be given
by (d − η∗/ν)/z.
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Figure 6. Estimates for the nonuniversal critical exponentη∗ obtained with equation (6). When
J ′/J is greater than 1 results are poor.

Figure 7. Plot of the anomalous dimension of the magnetizationx0 = zθ + η∗/2ν versus the
ratio of couplings(J ′/J ).
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In summary, in order to understand the effect of a marginal operator over the dynamical
critical exponents we have investigated the short-time critical dynamics of the Ising model
with a line of defects. We have confirmed nonuniversality for the ‘local’ exponentθ but
not for the global dynamical exponentz. The universality ofz permitted us to determine
the static nonuniversal indexη∗, of the correlation function along the line of defects, using
just the first 100 steps of the simulation (free of critical slowing down phenomena). We
have also detected an apparent universal behaviour for the anomalous dimensionx0 of the
magnetization, even at the line of defects. Although the numerical results can be slightly
different, they are qualitatively the same when we use heat-bath or Metropolis updating. At
present, we are studying global and local persistence [24–26] phenomena in this model.

References

[1] Janssen H K, Schaub B and Schmittmann B 1989Z. Phys.B 73 539
[2] Huse D 1989Phys. Rev.B 40 304
[3] Li Z B, Schülke L and Zheng B 1995Phys. Rev. Lett.74 3396
[4] de Oliveira P M C1992Europhys. Lett.20 621
[5] Soares M S, Kamphorst Leal da Silva J and Barreto F C 1997Phys. Rev.B 55 1021
[6] Mendes J F F andSantos M A 1998Phys. Rev.E 57 108
[7] Kadanoff L P and Wegner F J 1971Phys. Rev.B 4 3989
[8] Li Z B, Liu X W, Schuelke L and Zheng B 1997Physica245A 485
[9] Onsager L 1944Phys. Rev.65 117

[10] Bariev R 1979Sov. Phys.–JETP50 613
[11] McCoy B and Perk J H H 1980Phys. Rev. Lett.44 840
[12] Peschel I and Schotte K 1982Z. Phys.B 54 305
[13] Cardy J 1984J. Phys. A: Math. Gen.17 L385
[14] Turban L 1985J. Phys. A: Math. Gen.18 L325
[15] Lieb E, Schultz T D and Mattis D C 1961Ann. Phys., NY16 407
[16] Guimar̃aes L G and Drugowich de Felı́cio J R 1986J. Phys. A: Math. Gen.19 L341
[17] Henkel M and Patḱos A 1987Nucl. Phys.B 285 29
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